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ABSTRACT 

Properties of the 3n-quark systems in the spherical cavity approximation 

of the MIT bag model are considered. Results concerning the kinematics-- 

color restrictions, baryon composition--as well as dynamics--mass formulae, 

magnetic moments, gluon corrections --of such states are obtained via a 

group theoretical treatment. The appearance of “hidden color” baryonic 

mixtures in multibaryonic states is emphasized, and the role of the quark-gluon 

interaction illustrated. 
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I. INTRODUCTION 

The notion of exotic states in elementary particle physics is not a new 

one and has a long history. A natural and physical way of understanding such 

states lays on the consideration of multiquark systems--i. e. more than one 

quark-antiquark (qq) or three quark (q3 1 systems--which were extensively 

discussed in the last years. 
1 

The recent interest on this subject has been 

brought in part by the MIT bag model. 
2 

Indeed this model predicts the 

existence of unusual hadrons. 3 A developed study of qm$ (m + n > 3) 

system, as well as some results concerning q6-system, 
3 

are already 

been proposed by Jaffe. 4,5 

In this paper, we shall present a detailed group-theoretical analysis 

of the quark content of six, nine and twelve quark systems, in the approximation 

of the spherical MIT bag. These states of baryonic number B = 2, 3, 4, etc. 

will be called multibaryonic states. 

Our goals are the following. First, we would like to consider the 

properties which can be given by a group theoretical study of such states. 

These properties are naturally of two sorts: kinematical (color problem, 

baryon composition of the states) and dynamical (mass formulae, magnetic 

moments, gluon correction, etc. 1. Secondly, we will carry more particularly 

our attention on the multibaryonic states owning the same quantum numbers 

as well known states in nuclear physics, i.e. the deutron D and the light 

nuclei 2. He3 and He4. 
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It is difficult at the present time to give an adequate physical interpretation 

of such states. However, we can expect that these multibaryonic states 

which emerge from the MIT bag model consideration could be observed as 

configuration-admixture to the usual nuclei. AS was argued in Ref. 6, in the 

deutron case, such a mixture of the bq-system with ~deutron qua&m.numbers 

appearing in the real deutron can be estimated from the asymptotic behavior 

of the deutron electromagnetic form factor at the level of about 7%. One can 

also expect that multibaryonic systems with an exotic internal structure 

(hidden color, for instance) could appear as high level excitations in nuclear 

matter. It is worth to mention here the encouraging results in the experimental 

search for dibaryonic resonances in L$Y and.:pp,,syatems. - 7i %nd!aWnin 

AA systems. 9 

The demand of the multibsryonic states to be singlets of color 

together with the Pauli principle lead to the possibility of assigning 

these states to completely anitsymmetric representations of the SU(i2) 

group, which contain the direct product of the SU(4) spin-isosPin group by 

the SU(3)-color group, as far as strange quarks are not involved: in this 

last case the appropriate group will be SU(18) (see section II). However 

this SU(i2) group cannot be considered as an exact symmetry group. and the 

study of the possible masses of these states appears more covariant in the 

framework of the SU(6) color -spin group, which contains the product of SU(3) 

color group by the SU(2) spin group, and recently considered by Jaffe5 

(section III). 
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Our group theoretical analysis will be pursued in order to calculate 

the relative couplings of proton-neutron and A. A isobar contained in the 

6 nonstrange quark system. The same type of analysis will be carried out 

for tri and tetrabaryonic states. It is interesting to point out that such a 

study also makes appear mixtures of “colored baryons” in these multibaryonic 

states (section IV). 

The calculation of the magnetic moments of the multibaryonic states 

can be easily done in the framework of the MIT bag model. However the 

quark gluon interaction is expected to play a more important role for these 

states than in the free nucleons. Generalizing in Section V a formula giving 

the gluonic corrections to the magnetic moments, we notice that the gluonic 

corrections obtained by this way can be very large, which leads in particular 

to consider the use of perturbation theory difficult to justify for the multiquark 

systems. 

Finally Appendix A is devoted to the study of certain representations 

of the SU(4) group relevant for our purposes, while in Appendix B Clebsch 

Gordan isoscalar factors of the group SU(12) are calculated. 
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II. SU(12) AND THE CLASSIFICATION OF MULTIBARYCNIC STATES 

In all that follows, the quarks are supposed to stand on the same energy 

shell with spin j = $, which is the case of the MIT bag model in the spherical 

cavity approximatiom- 

As far as we consider the usual baryons constituted by 3 quarks and 

classified by the group SU(6)--or SU(8) if we include charmed baryons--the 

principle of colorless baryons together with the Pauli principle lead to assign 

the low lying baryons to belong to the representation:: 

56 of SU(6) x 1 of SU(3)’ 

if SU(3)c denotes the SU(3) color group. The representations 70 = 

n 

EP 
and 20 = of SU(6) coming from the product ax ax 0 = 6 x 6 x 6 

are also used to classified baryons of orbital momentum L # 0: the group 

SU(6) is then replaced by SU(6) x O(3),” and, for example, the completely 

symmetric combinations (70, L = 1) or (20, L = 1) are considered. 

We can apply the same techniques to construct multibaryonic states. 

Let us take the example of the dibaryonic states supposed constitute of 6 

quarks of the type p and n--no strange or charmed quark. Then the SU(6) 

classification group can be restricted to X(4) 1 SU(2). isospin xSU(2) sprri 

The fully antisymmetric functions could be obtained only from the combination 

of the two conjugate patterns 
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EEixH (2.2) 

50 of SU(4) 1 of SU(3JC 

6 However, a simple check shows that in the product 4 x . . . x 4 = 4 , m 

which 4 is the fundamental SU(4) representation, the 50 dimensional representati 

appears 5 times; and we can count the same number of singlet SU(3) 

representations in the product 3 x . . . 6 x 3 = 3 of SU(3) representations. 

Let us note that we were not faced with such a problem for the usual one-baryon 

states, However, this problem is solved by applying the Pauli principle 

for multiquark wave functions. In the group theoretical language, this can 

be done by embedding the product group SU(4) x SU(3) into the group SU(l2l. 

Now. considering the product 12 x . . . x 12 = 126 where 12 is the fundamental 

representation of SU(12), we are interested in the completely antisymmetric 

SU(12) representation of dimension 924 = (i6) using the Young diagram 

notation. The reduction of this representation with respect to SU(4) x SU(3) 

11 
is : 

924 = (50, 1) + (64, 8) + (6, 27) + (10, 10) + (a, g) . (2.3) 

As expected, the 924 representation contains the representation (50, i) 

once and only once!’ Thus the two-baryonic states are perfectly characterized 

as elements of the (50, 1) representation of SU(4) X SU(3) in the 924 

representation of SU(12). 
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In this framework, the nuclei and A isobars belong to the 220 dimensional 

representation of SU(12) and to the (20, 1) representation of SU(4) x SU(3), 

since in SU(12): 

12 x 12 x 12 = 220 + 364 f 572 f 572 

a 

(2.4) 

and reducing with respect to SU(4) x SU(3): 

220 = (20, 1) + (201, 8) + G’, 10) . (2.5) 

Let us also note that the 924 representations can come only in the produut 

(12)3 x (12)3 from: 

220 x 220 = 924 + 8580 + 23166 + i5730 

(2) + (2, 14) + (22, 12)+(23) . 

For tri-baryonic states, we will consider the pattern: 

F/ x w 
20 of SU(4) 1 of SU(3) 

(2.6) 

(2.7) 

in the representation: 220 = (i9) of SU(12). 

The tetrabaryonic state is unique: (ii2) = 1 and corresponds 

exactly to the case: 
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g-.$ 
y+qq 

X 

I 

1 of SU(4) 

’ I 
R (2.9) 

j 

1 of SU(3) 

III. GENERALIZATION OF JAFFE’S SPIN-COLOR ANALYSIS 

The above introduced SU(12) group--or SU(18) if we consider strange 

quarks--is obviously not an exact symmetry even for these multibaryonic 

states constituted of quarks in the lowest mode. In the MIT bag model for 

instance, the energies of multibaryonic states are split due to the presence 

of the color gluon fields. Starting from the results of the MIT bag model 

for the gluon field contribution to the energy of multiquark system, R. Jaffe 

has introduced the notion of spin-color symmetry (SU 
SC 

(6 )-group 1, which 

provides an effective tool for the analysis of the mass spectrum of 

multibaryonic states in the cavity approximation. This result can be presented 

in the form 5,12 

2.04n - 1.84 + 0.0325A 1 
314 

M 
bag 

=m 
P 3.50 

where 

A = 24n+4J(J+1)-sC6SC 
c 

(3.1) 

(3. 2) 

mp being the proton mass, C6 
SC 

the quadratic Casimir operator of the 

susc (6) group, and n the number of the quarks in the lowest j = 1/2 mode, 
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Hereafter, we recall with some details the Jaffe’s results for 6-quark 

systems, and present a generalization of these results for 9q and 12q systems. 

1. 6q System (B = 2) 

Starting from the Young diagram describing the color singlet wave 

function of 6 quarks one gets, via the Pauli principle, the type of the Young 

diagram for the spin-flavor wave function of the system, i. e. 

color 

w 

Pauli SF 490 for SUSF(6) 

50 for SUs1(4) 

The spin-flavor decomposition (SU SF 
(6) -SUs(2) x SUF(31) of the 490 

dimensional SU(6) representation is given by 

490 = (7, E) + (5, 27 + 8) + (3, 35 + 10 + m + 8) + (1, 28 + 27 + 11.. , (3.3) 

while the spin-isospin decompositionof .the corresponding representation 

50 of SUs1(4), describing dibaryons without strangeness (or Y = n/3) is 

13 
given by Lo 

50 = (7, 1)+(5, 3)+(3, 5+1) +(i, 7+3) 1 y=2 
* (3.4) 

Now, for each flavor (isospin) representation of SU(3)F (SU(2)‘) , there 

exists only one representation of the SU(6 )” group, which allows to construct 

the completely antisymmetric wave functions of the system. This representation 

of SU(6) 
SC 

can be determined as follows: 



-lO- FERMILAB-Pub-771 56-THY 

p + v 
su(3,F 

LIP 
SU(6) 

SC 

The results are presented in Table III. 1. Note that in Ref. 5 the state 

S = 3 is missing. 

2. 9q system (B = 3) 

color 

m EFe (/$ = 1 'z ~~((~~s~ . 

The spin-flavor decomposition ( SU(6) SF -+su(2? x SU(3jF) is given by 

980 = (IO, 1) + (8, 8) + (6, 27 + 8 + 1) 

+ (4, 64 + 27 + 10 + = + 8 + 1) 

+ (2, 35+=+27 +S) 

(3.5) 

while the spinrisospin decomposition ( SU(4) ‘I -f SU(2 )’ X SU(2)I) is : 

73 = (4, 4) + (2, 2) , y = 3 . (3.6) 

The result of analysis of spin-color content and the classic energies of the 

tribaryonic states are given in Table 11122. 
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color 

Hm 

3. 12q System (B = 4) 

Pauli 
principle 

sf 

kPrd=~ 

490 

1 

SU(6 lsf 

SU(4) 
SI 

The spin-flavor decomposition ( SU(6) sf - SU(2? x SU(3jf >is given by 

490 = (7, IO) + (5, 27 -t 8) + (3, %+ 10 + m + 8, + (1, ??fi + 27 + 1) (3.7) 

while the spin-isospin decomposition SU(4)‘I + SUC2)s x SU(2)I for the 

tetrabaryonic state without strangeness (Y = 4) is trivial: 1 = (1. 1). The 

result of the analysis and the classical energies of tetrabaryonic states 

are given in Table III. 3. 

Before concluding this section, let us add that, as is known, these 

multiquark systems are in general classically unstable against deformations 

of the surface of tbs bag and could undergo fission. 4,15 
The quantum picture 

of that fission process is not yet clear enough. However, due to the presence 

of the hidden color configurations (see section V) in multibaryonic systems, 

these fission processes should more likely be described in the framework 

of the multicharmed approach of Dashen et al. 16 
which incorporates 

simultaneously confined and unconfined channels. We mention that this theory 

allows an appearance, in the Hamiltonian spectrum, of bound states above 

the threshold of continuum spectrum. 



su3F 

28 

27 

1 

35 

IT 

10 

8 

27 

8 

m 

su sc 
6 

1 

189 

490 

35 

175 

280 

896 

189 

896 

175 
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Table III. 1 

A M theor 

144 2805 

24 2241 

- 72 1753 

80 2510 

8 2163 

8 2163 

- 28 1982 

48 2357 

- 12 2063 

48 2357 

es+1, 21+1) 
for Y = 2 

(1, 7) 

S-like bag 

(3. 5) 

D-like bag 

(5,3) 

(7,3) 

Masses of dibaryonic S-wave states 



S su3F 

il2 35 

T5 

27 

8 

312 64 

27 

10 

x 

8 

1 

512 27 

8 

1 

712 8 

912 1 

“6 
SC 

70 

‘rn 

540 

1960 

A 

120 3521 

120 3521 (H3, He3Nke bag 

72 3317 

12 

20 

540 

560 

- 
560 

1960 

980 

168 

84 

60 

60 

24 

- 12 

540 

1960 

980 

104 

44 

8 

1960 72 

980 72 
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Table III. 2 

M 
theor 

3057 

3721 

3369 

3266 

3266 

3109 

2950 

3454 

3197 

3039 

3317 

3317 

(2s + 1, 21 + 1) 
with Y = 3 

(4.4) 

Masses of tribaryonic S-wave states 



su3F 

23 

27 

1 

10 

73 

8 

27 

8 

10 

SUbSC 

1 

189 

490 

35 

175 

280 

896 

189 

896 

175 
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A 

288 

168 

72 

224 

152 

152 

116 

192 

132 

192 

M 
States with 

theor Y=4 

4932 He4-like bag 

4474 

4096 

4689 

4412 

4412 

4270 

4567 

4333 

4567 

Masses of tetrabaryonic S-wave states 
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IV. CONTENT OF MULTIBARYONIC STATES AND HIDDEN COLOR 

A natural question which arises is the calculation of the relative 

mixtures of baryon- baryon contained in such dibaryonic states, and more 

generally the different combinations of baryons, dibaryonic and tribaryonic 

states appearing in the tri and tetrabaryonic states. 

First consider the dibaryonic states. CJne’can see in our framework 

that, if dibaryonic states contain mixtures of the nuclei and their A isobar 

belonging to the (20, 1) representation of SU(4) x SU(3 ), they contain also 

mixtures of “colored” baryons standing in the (ZO’, 8) of SU(4) x SU(3). 

In order to prove this property, let us recall that the SU(12) representation 

924 = (i6) appearing in the product (1213 x (12J3 is actually built only from 

the product 220‘ x 220, i.e. (i3) x (i3) t m erms of Young diagrams. Then 

from Eq. (2. 5) it is easy to check that the (50, 1) states in the 924 come 

only from the two products: 

(20, 1) x(20, I) = (m+..., 1) 

(20’, 8) x (ZO’, 8) = d5x) + . . . , I+ . . . ) (4. 1) 

The tribaryonic states contain mixtures of three baryons and one 

baryon-dibaryon. They belong to the representation (m, 11 of SU(4) x SU(3) 

in the 220 of SU(12 I. The 220 representation is built from the products 

220 x 220 x 220 and 924 x 220 of representations of SU(I2). Using the 

decompositions given in Eqs. (2. 3) and (2. 51, we can compute that there 

exist the following mixtures of dibaryonic-baryon in 924 x 220: 
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(50, 11 x (20 , 11 = m + . . . . I) 

(64, 8) x (201, 8) = Cm+ . . . . I+...) (4. 2) 

(IT, rn) x ( T, IO) = (-2-G +. ..) 1 + . ..) . 

-- 
These noncolored--(50, l)--and colored--(64, 8) and (10, 10)--dibaryonic 

states containing themselves combinations of baryon- baryon states in the 

product 220 x 220: 

(20 , 11 x (20 , 11 = (50 +..., 11 

(20’ , 8) x (ZO’, 8) = (50+ . . . . I+...) 

(ZO’, 8) x (2’3 > 1) = (64+..., 8) 

(20’ , 8) x (ZO’, 8) = (64+ . . . . 8+...) 

(z’, 10)x(20’, 8) = (64+ . . . . 8+...) 

(4.3) 

(ZO’, 8) x (20’. 8) = (fl+ . . . . g+...) 

( 4, 10)x ( z, 10) = (E’..., i-iT+...j 

.&na analogous study can be done for the tetrabaryonic state. These different 

results are gathered in Table IV. 1. 

Finally we have calculated the pn and AA content for the “D-like” 

and “S-like” quark bag, i. e. the states belonging to the (3, 1) and (1, 3) 

respectively of the SU(2) 
S I 

x SU(2) group, in the 50 representations of 

SU(4) and in the 924 representation of SU(12). For such a calculation we 

used Clebsch-Gordan coefficients of the SU(12) group when reduced with 

respect to SU(4) x SU(3). Such a SU(12) C. G. coefficient can be written 
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as the triproduct of an SU(12) isoscalar, a SU(4)- and a SU(3)-C. G. coefficient: 

CSU(12) = 
! 

x 
(x1, x2) (YIP,,) ($:q 

I j 
csu(4). csu(3) (4.4) 

if x, y, z are SU(12) representations containing respectively the couples 

(X 1, x,1, (yl, Y,) and (zl, 2,) of SU(4) x SU(3) representations. 

The SU(12) isoscalar we were interested in is: 

2 2~0 220 
(20, 1) (20, 11 

and has been calculated by the method given in Appendix B. Because the 

SU(3) C. G. coefficient part is trivial--we have only singlets of color--the 

second step is the SU(4) C. G. coefficients calculations. The details of 

these calculations are given in Appendix A, while the results are given 

in Tables IV. 2 and IV. 3. Thus the overall composition of the “D like” 

quark bag is the same as that of the “S like” quark bag, and such that 

nucleon-nucleon = 11% 

isnbal components = 9% 

baryon pairs with hidden color = 80% . 

We note the large percentage of hidden color baryon pairs. Then the “D like” 

quark bag appears quite different of the real deutron which is predominantly 

a loosely bound proton-neutron system. However, we have suggested in 
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Ref. 6, using experimental data on the deutron form factor F,(q’) at large 
a possibility of tunneling transition of real deutron into the 6 quarks 

-7-Z 
spherically symmetric state with probability about 7 x9liJ . Following 

this line, the real deutron would contain nonnegligeable mixture of baryon- 

baryon with “hidden color. ” 

Table IV. 2 

Color analysis of multibaryonic states 

Mbaryonic states 

(50, il c 220sv(*2) 

t 

i-baryomc state x l-baryonic state 

(20, 11 x (20, 1) 

(ZO’, 8) x (ZO’, 8) 

Tribaryonic states 

m, il c 220su(12) 

t 

i-baryonic state x 2-baryonic state + i-bar; state x l-bar. state 

(20 ,:i) x (50, 11 - (20 , 1)x(20, 11 

(20’. 8) x (ZO’, 8) 

(cont’d) 
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(201, 8) x (64, 8) - (ZO’, 8) x (20, 4) 

(201, 8) x (ZO', 8) 

(;I, 101 x (20'. 8) 

(7, 10) x cm, m, + (ZO’, 8) x (ZO', 8) 

(7, 10) x (Z, 10) 

T&rabaryonic State 

(*I i)E: isu(i2) 

t 

l-bar. statex3-bar.state i-b=. statex2-b-tats ‘- l-bar.state x i-bar. state 

(ZO., i9)X!Z@n,i~~) - cm, 11 x (50, 11 +(20, 1) 

I 

x (20, i) 

GO’, 8) x @O’, 8) 

(zo', 8) x (64, 8) x (20 , 1) 

x (20'. 8) 

x (201, 8) 

( 2 I 101 x cm, a) - (ZO', 

I 

8) x (ZO', 8) 

(T, IO) x (T, 101 

(20’ > 8) x (ZO', 8) - (20 a 1) x (64, 8) - 

W’, 8) x (64, 8) 

( z, 101 x (64, 81 

(ZO', 8) x ( 6, 27) + '(ZO', 8) x (ZO', 8) 

( ;i I 10) x ( 6, 27) l({T', 10) x (ZO', 8) 

-- 
W’, 8) x (10, 10) ( 2, 101 x ( z’, 10) 
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CT, 101 x (a, 73) ( 2, 10) x (20 I 1) 

W’, 8) x (10, 10) - (ZO’, 8) x (ZO’, 8) 

( 7 I 10) x (ZO’, 8) 

(Z’, to) x CT, 101 - WI’, 8) x (64, 8) 

WI’, 8) x ( 6, 27) 

( 7, lo1 x ( 6, 27) 

(20, 1) x (rn, 5) 

WI’, 8) x cm, T5) 

(7, 101 x (IO, 10) 

(i, 11 c i 
SU(i2) 

t 

di-bar. state x di-bar. state + l-bar. state X l-bar. state 

(64; 8&l x (64, 8) - (20’ , 8) x (20, 8) 

(20’) 8) x (ZO’, 8) 

(7, 101 x (ZO’, 8) 

( 6, 27) x (66, 27) + (ZO’, 8) x (ZO’, 8) 

(q, IO) x (ZO’, 8) 

(7, 10) x C-5, 10) 

(iT, n) x (10, 101 - (.‘Z’, li0) x (ZO”, 1) 

GO’, 8) x (ZO’, 8) 

CT’, 101 x (ZO’, 8) 
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(10, 10) x (Ib, 75’) - W’, 8) x (ZO’, 8) 

CT, 101 x (7, 10) 

(50, 1) x (50, 1) + (20 , 11 x (7.0, 1) 

(ZO’, 8) x (ZO’, 8) 

Table IV. 2 

couplings of “D-like” quark bag with S - i 

to the p . n and A * A systema (SU(4) ;:t, 

il2, 112 312, -112 -112, 3/Z 

A*A- 
?: y&y 

& & 

A+A” 2 
3d-m -& $T 

pn --- -em 
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Couplings of the “S-like” quark bag with Iz = 1 

to the p . n and A . A systems (SU(4) part) 

1 

At+AO 

0 ++ 
AA 

A+A+ 

PP 
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V. ROLEOFTHEGLUONEXCHANGECORRECTIONS 

As it is known, the gluon-quark interaction gives quite large excess 

of energy in the multibaryonic states described by a spherical bag, as 

compared with energies of the corresponding systems of free nucleons. 

Thus we can expect that the dynamics of multibaryonic systems is much more 

sensitive to the gluon exchange effects than in the case of usual baryons 

and mesons. Here we illustrate this point by calculating the gluon exchange 

corrections to the magnetic moments of multibaryonic ssytems. A formula 

giving the gluonic corrections. 61.r (2) to the second order in the strong coupling 

constant (Y s, and valid for any number of nonstrange quarks is obtained, 

generalizing the results of Ref. 17. 

First, let us recall that the magnetic moment of a multiquark system 

in the MIT bag model is given by 2910: 

2M p = 1.08 gM . h = 0.2 R . gM (5.1) 

with M = 0.62GeV. h 314 

and h = n-~.9+~.~6 +i)+3T(T+i:I 
3 

where R is the radius of the quark bag, n the number of (nonstrange) quarks, 

and gM = <C(Qa .>. the “nonrelativistic” group theoretical part of the 
1 Z’L 

magnetic moment. 

In order to calculate the quantity gM corresponding to a specific 

multiquark system, it is necessary to know the spin and isospin quark content 

of the considered state. 
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For such a purpose we will be concerned only with the SU(4)S1 part 

of the SU(12) group introduced in Sec. II, as far as strange quarks are not 

involved. Let us consider the different dibaryonic states. Using Eq. (3.4) 

we have to look only at the states of the 50 dimensional representation of 

SU(4)S’ which belongs to one of the SU(2)’ x SU(2)’ representations: (3, l), 

(3, 5), (5, 3), and (7, 1). since the states of the (I, 3) and (1, 7) have no 

magnetic moments, being singlets of spin. 

The quark content of these states has been calculated using the Young 

tableau techniques, and we have, for example, the following results: 

r2 150; (7, 1); Sz = 3, I =O> = c 
tttttt 

.pjBjp!nn,n m 

150: (3, 5); sz c 
ttt Ilt 

= 1, Iz=2> = bppppn 
kB 

c tttitt~ 
/ 50; (5, 3); Sz = 2, Iz= 1> = ppppnn 

ka3 (5.2) 

the notations on the r. h. o. of Eq. (5. 2 ) being defined in Appendix A. It 

is also very easy to construct the states of the (3, 5) and (5, 3) multiplets 

with Iz = -2 and Iz = -1 respectively. Then using the relation: 

IZ 
gM 

= ; + gA . 2i (5.3) 

where gA = <F(oz-rz)i> with 7x, y, z the generators of SU(2) 
I , we deduce 

that the different gM corresponding to the above states satisfy: gM = S/ 3. 
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The same property is of course valid for the states of the multiplets (7, 1) 

and (3, 1). We know already that the tribaryonic states are classified in 

the n of SU(4), the decomposition of which with respect to SU(2) x SU(2) 

is given by Eq. (3.6). Using the conjugation property between the representation: 

zand 20, this later containing the usual baryons (see Appendix A), it is 

almost straightforward to obtain the values of gM corresponding to tribaryonic 

states. As an example, we will consider the physically interesting case 

of the tribaryonic states in the (2 , 2 ) with Sz = $ and Iz = 6 and Iz = -*, 

which own the quantum numbers of the He’ and H’ states respectively. 

These states are directly related to the neutron and proton states with 

Sz = -$, respectively, and we can write 
18 

: 

/m; (2, 2:); sz= 4, 
1 tttllttll 

Iz= +;> 7 -n c PPP;PPnnnnn J 

m 

+ & ttliltttl 
J( 3 Pwppnnnn 

‘B 

(5. 3) 

c ttlltttll\ 1%; (2, 2:); sz= f; ILZ’ -$ = -$ ppppnnnnn/ 

I.# 

-SC 
tttrttlll 

3 ppppnnnnn > 
@I 
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It follows that: 

gM ( He3-like ) = -213; gM(H3-like) = 1 

which are exactly the values of gM corresponding to the neutron and proton 

respectively. 

Now, let us determine the contribution of the second order gluon 

exchange diagrams, given in Fig. V. 1, to the magnetic moments of the 

multibaryonic states. 

+ . + . . . 
j ‘- j sw 

Fig.,& Gluon Exchange Diagrams 

Actually one can generalize the results of calculation of gluon exchange 

corrections to the nucleon magnetic moment 
17 

to obtain the equation: 

(2) 
’ ‘gluon exch. 

= CR C+Q2~“,. 1 

(5.4) 

where: ?? = kao, A a being the SU(3) color matrices and: 413 c = 0.005. 

Using the relation: 

(xaJJi(XaJ\ = ; + 2;; + z;.;. + 
3 ij 1 J 1 

xaihaj (5. 5! 
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which follows from the requirement of complete antisymmetry of the multiquark 

wave function, one can bring eq. (5.4) into the form: 

(2) % 
6P gluon exch. 

= w,).oo5RT gA(I+1)+S(8Q-n- 2)+4gM(“-3) 
C 1 . (5.6) 

Contrary to the case of the nucleon where the gluon exchange corrections which 

17 has been found constitute only small corrections to the magnetic moment, 

the contribution of gluon exchange diagrams to the multibaryonic magnetic 

moments is generally very large. Considering as an example the six quark 

bag, one gets from Eq. (5. 6) 

= -0.3(2&-i) 
6q 

(5.71 

which corresponds to gluon exchange contributions up to 150% (!.I for 

Q=Q -3. max Thus the perturbation theory cannot be applied in finding 

magnetic moments of the multibaryonic systems. 

Hereafter we give, as an information, a tableau of the calculated 

values of t.~ and 6 TV., 
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b quark system: 

(S, II Q 

(3, 1) 1 

(7, 1) 3 

(3, 5) 1 

(5, 3) 2 

9 quark system: 

ct, +I 

12=g 2 

I2 =-$ 1 

%A 

113 

1 

113 

213 

W$ L,, 

c 1.88 1.71 

6.29 

2. 27 

4.19 

-213 -77.13 -6.4 

1 ilpo77 8.96 

-3w, 

-150% 

- 30% 

- 90% 

- 60% 

- 50% 

T8ble V. i Calculation of multibaryonic magnetic 
moments in the spherical bag approximation 
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CONCLUSION 

This study can be considered as a first step in the multibaryonic states 

problem, in the sense that we have restricted ourselves to quarks in the 

lowest mode j = $. However we feel this approach necessary and already 

instructive. First, from a technical point of view, one can expect from 

these results a straightforward group theoretical development to the study 

of systems containing quarks in excited modes. Moreover, the calculation 

of the magnetic moments gluonic corrections on one hand, and of the ~~. .I 

multibaryonic masses, o.n the other hand, confirm the important role of 

the gluon-quark interaction in multibaryonic systems. Finally the existence 

of mixtures of “colored baryons” we pointed out in these 3n-quark systems 

could be an interesting field of investigation in the stud~y of nuclear matter. 
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APPENDIX A: 
THE REPRESENTATIONS 20 AND 50 OF SU(4) 

The calculations of the relative couplings of baryons in dibaryonic 

states is performed with the help of the SU(4) Clebsch-Gordan coefficients. 

Tables of SU(4) Clebsch-Gordan coefficients are given in the literature 20 

considering the reduction of SU(4) with respect to SU(3) x U(1). In order 

to use these tables we have to express the multibaryonic states known in 

the spin-isospin basis--SU(2)S x SU(Z)‘--in terms of the SU(3) x U(1) basis 

states. Note that we could also use the method described in Appendix B 

for the computation of isoscal&r factors to calculate the Clebsch-Gordan 

coefficients of SU(4) reduced with respect to SU(2) x SU(2). Indeed such a il 

C. G. coefficient will be the triproduct of an isoscalar factor and two SU(2) 

C. G. coefficients corresponding to the spin and isospin respectively. 

Anyway, it is obvious that tables of C. G. coefficients of SU(4) reduced with 

respect to SU(2) x SU(21 would be very useful. 
21 

The reduction with respect to SU(3) of the representations 20 and 50 

of SU(4) are: 

20 = io+ 6t 3t 1 

50 = n+z+15+10 
(A. 1) 

These representations are represented in the 3-dimensional space 

(SU(4) being of rank 3) in Tables AI. and AII. The four states of the 

t I t 1 fundamental representation of SU(4) are chosen to be: Q , p , n , n , 
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tit 
and by the notation (p pn)ij, for example in Table AI, we mean the state: 

tit 

(ppn)cm = 
&A] (A. 2) 

,v being the Young symmetrizer corresponding to the Young tableau: m]. 

1 2 a’ 
Let us add that in Table A. II the Young tableau will be: 4 5 

EEH 
. 

Considering again Table AII, we note that there are two independent 

states on each top of the inside triangle appearing in the SU(3) representations 

15 and 1?. In other words, in the reduction of the 15 (resp. ??I representation 

of SU(3) with respect to SU(2)J X U(iJy, we find for the value Y = i/ 3 

(resp. -i/3) a J = 3/ 2 and a 3 = 112 SU(2) representation, while for Y = -Z/3 

(resp. Z/3) there exist a J = 1 and a J = 0 SU(2) representation. There the 

states of the 50 representation of SU(4) corresponding to I = 0, S = i and 

I = 0, S = 0, to which are respectively associated the deutron-like six quark 

system and its so-called deutron S-companion can be written: 

I~Zyl-like> = dE 1 15; -$, s> - $ I-5; $, i; Y= -,f > 

-~ g 1 l-5 ;, +>+ - J”l 15 ITiT;3 -1, 
2’ 2 

(A.31 

ISIzEi-like> = &- 1 15; 1, I> - &- 
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while the nuclei and their isobar states appear as: 

IP 1/z> = J”l 
7 6; 1, 1> - & 1 10; 1, o> 

In 112 
> = 

$ 
3 I,,;$, -$ t-&6;;, ;> 

Q=2 +A+;q = 110; ; ) sz> sz =;, * $ 

Q=i [A i3,i> ’ = 110; 1, 1> 

$,2> = E 110; 1, O> + &I 6; 1, 1> 

1 At-1,2> = 4; 16; 1, O> *& j 10; 1, -1> (A.41 

Q = -1 1 A -3,2> = 110; 0, O> 

/A-1,2> = 16; 0, O> 

/A --1,2> = 13; 0, O> 

Q=O 1A03,2> = 110; ;, $> 

b&z> = 8 ~6;~,++-&10;;, -$ 

I~-i,2> = j-96:;: -5>+-&3;5, ;> . 
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3 

6 

IO 

Table AI. The representation 20 = (1 3, of SU(~). 
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15 

f 

4 -- 
3 

/ 

Y 

2 

I 

0 

-I 

Table AIL The representation 50 = (3’) of SU(4). 
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APPENDIX B: 
ON THE CLEBSCH-GORDAN ISOSCALAR FACTORS OF 

THE SU(12) GROUP 

Hereafter we will be concerned only with baryonic and dibaryonic 

states belonging to the 220 and 924 dimensional representations of STJ(!Z) 

respectively. First, let us determine such states by the formulae: 

lb> = 

id, i2, i3 

[d> = 

t 
a. 

For the sake of simplicity we shall suppress below the sign of summation 

in the quark indices for which we shall preserve only their order number. 

So the matrix elements we are interested in take the form: 

<d/bf., 2e b > I= c&j 

I! 4 . 

6” 

where the factor 6! /3! 3! = 20 appears as a statistical weight of a system 

of two baryon states, each made of three quarks. 

(B.2) 
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The completeness or normalization equation takes the form: 

& 1 1 <dlblb2>12 = 1 (B. 3) 

for each state d. 

The structure of the complete antisymmetric wave functions of baryonic 

states in terms of the color and spin-isospin degrees of freedom can be 

presented in the following form: 

(20 , 1) = 

(201, 8) = 

(50, 1) = 

El=! 2 

3 3 
x msl 

C 

I 

Using the symmetry properties of the corresponding color and spin-isospin 

wave functions, e. g. : 
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(’ ‘i=s,3 ‘iyl) mi sI = 0 (for eachj) 

(i+i=~,3Pi~) MC = 0 (foreachj) EL 5) 

One can bring the matrix elements of the problem to the form: 

<(50, I)/ (20 , u2> =2 (m* E),, 

<(50, I)1 (20!, w2>. - -i( fgfj p p) sIx ?3,B2) 

(5 6) 

where the BE are octet 3 x 3 matrices representing the color wave functions 

of the baryons which belong to the (20’) 8 ) family. 

These formulas allow to find the total weights of the “normal” 

(20, 1) x (20, l)--and the “hidden color” (ZO’:, 8) x (20’, 8)--components 

of the dibaryonic states. These weights can be related to the isoscalar 

factors which appear in finding the Clebsch-Gordan coefficients of the SU(12) 

group via the decomposition with respect to SU(4)” x (SU(3 )color, namely: 

/ 220 

i 

-220 
Ly = z- 

(20, 1) (20, 1) 
blb2 
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220 220 ~I! = 924 j = $ 1 (<40, 1)[(20’, 8)2>/2 . (B.7) 

(20’; 8) (20’, 8), (50, 11, 
blb2 

Starting from Eqs. (B. 6) and using the completeness equations for the SU(4) SI 

wave functions: 

GTGJ X m] = Z3 (symmetrizer operator) 

b C 20 

b F20, p x py = & (i + Pi2)(2 - Pi3 - Pz3)(1 + Pi2) 

and for the octet SU(3 )color wave function 

-- 
pr(BiB2)-,(B1B2) = 8 

bf*b2 

one can get the result: 

1 
Q=-; 5 P=$ . 

(B.8) 

(B.9) 

(B. 10) 

This says that the 6-quark dibaryonic state consists of 20% of “normal” 

and as much as 80% of the “hidden color” components. 
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